Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 220: 109251, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126728

RESUMO

Long-term inhibition of kappa opioid receptor (KOR) signaling in peripheral pain-sensing neurons is a potential obstacle for development of peripherally-restricted KOR agonists that produce analgesia. Such a long-term inhibitory mechanism is invoked from activation of c-Jun N-terminal kinase (JNK) that follows a single injection of the KOR antagonist norbinaltorphimine (norBNI). This effect requires protein synthesis of an unknown mediator in peripheral pain-sensing neurons. Using 2D difference gel electrophoresis with tandem mass spectrometry, we have identified that the scaffolding protein 14-3-3γ is upregulated in peripheral sensory neurons following activation of JNK with norBNI. Knockdown of 14-3-3γ by siRNA eliminates the long-term reduction in KOR-mediated cAMP signaling by norBNI in peripheral sensory neurons in culture. Similarly, knockdown of 14-3-3γ in the rat hind paw abolished the norBNI-mediated long-term reduction in peripheral KOR-mediated antinociception. Further, overexpression of 14-3-3γ in KOR expressing CHO cells prevented KOR-mediated inhibition of cAMP signaling. These long-term effects are selective for KOR as heterologous regulation of other receptor systems was not observed. These data suggest that 14-3-3γ is both necessary and sufficient for the long-term inhibition of KOR by norBNI in peripheral sensory neurons.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Receptores Opioides kappa , Proteínas 14-3-3 , Analgésicos , Animais , Cricetinae , Cricetulus , Naltrexona/análogos & derivados , Dor , RNA Interferente Pequeno , Ratos , Receptores Opioides kappa/metabolismo
2.
Neuropharmacology ; 216: 109187, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35835212

RESUMO

Pain and pain management in the elderly population is a significant social and medical problem. Pain sensation is a complex phenomenon that typically involves activation of peripheral pain-sensing neurons (nociceptors) which send signals to the spinal cord and brain that are interpreted as pain, an unpleasant sensory experience. In this work, young (4-5 months) and aged (26-27 months) Fischer 344 x Brown Norway (F344xBN) rats were examined for nociceptor sensitivity to activation by thermal (cold and heat) and mechanical stimulation following treatment with inflammatory mediators and activators of transient receptor potential (TRP) channels. Unlike other senses that decrease in sensitivity with age, sensitivity of hindpaw nociceptors to thermal and mechanical stimulation was not different between young and aged F344xBN rats. Intraplantar injection of bradykinin (BK) produced greater thermal and mechanical allodynia in aged versus young rats, whereas only mechanical allodynia was greater in aged rats following injection of prostaglandin E2 (PGE2). Intraplantar injection of TRP channel activators, capsaicin (TRPV1), mustard oil (TRPA1) and menthol (TRPM8) each resulted in greater mechanical allodynia in aged versus young rats and capsaicin-induced heat allodynia was also greater in aged rats. A treatment-induced allodynia that was greater in young rats was never observed. The anti-allodynic effects of intraplantar injection of kappa and delta opioid receptor agonists, salvinorin-A and D-Pen2,D-Pen5]enkephalin (DPDPE), respectively, were greater in aged than young rats, whereas mu opioid receptor agonists, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) and morphine, were not effective in aged rats. Consistent with these observations, in primary cultures of peripheral sensory neurons, inhibition of cAMP signaling in response to delta and kappa receptor agonists was greater in cultures derived from aged rats. By contrast, mu receptor agonists did not inhibit cAMP signaling in aged rats. Thus, age-related changes in nociceptors generally favor increased pain signaling in aged versus young rats, suggesting that changes in nociceptor sensitivity may play a role in the increased incidence of pain in the elderly population. These results also suggest that development of peripherally-restricted kappa or delta opioid receptor agonists may provide safer and effective pain relief for the elderly.


Assuntos
Hiperalgesia , Receptores Opioides delta , Idoso , Analgésicos Opioides/farmacologia , Animais , Capsaicina/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Encefalinas , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Nociceptores , Dor , Ratos , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Células Receptoras Sensoriais
3.
Pharmacol Res Perspect ; 9(6): e00887, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34713624

RESUMO

Opioid overdose is a leading cause of death in the United States. The only treatment available currently is the competitive antagonist, naloxone (Narcan® ). Although naloxone is very effective and has saved many lives, as a competitive antagonist it has limitations. Due to the short half-life of naloxone, renarcotization can occur if the ingested opioid agonist remains in the body longer. Moreover, because antagonism by naloxone is surmountable, renarcotization can also occur in the presence of naloxone if a relatively larger dose of opioid agonist is taken. In such circumstances, a long-lasting, non-surmountable antagonist would offer an improvement in overdose treatment. Methocinnamox (MCAM) has been reported to have a long duration of antagonist action at mu opioid receptors in vivo. In HEK cells expressing the human mu opioid receptor, MCAM antagonism of mu agonist-inhibition of cAMP production was time-dependent, non-surmountable and non-reversible, consistent with (pseudo)-irreversible binding. In vivo, MCAM injected locally into the rat hindpaw antagonized mu agonist-mediated inhibition of thermal allodynia for up to 96 h. By contrast, antagonism by MCAM of delta or kappa agonists in HEK cells and in vivo was consistent with simple competitive antagonism. Surprisingly, MCAM also shifted the concentration-response curves of mu agonists in HEK cells in the absence of receptor reserve in a ligand-dependent manner. The shift in the [D-Ala2 ,N-MePhe4 ,Gly-ol5 ]-enkephalin (DAMGO) concentration-response curve by MCAM was insensitive to naloxone, suggesting that in addition to (pseudo)-irreversible orthosteric antagonism, MCAM acts allosterically to alter the affinity and/or intrinsic efficacy of mu agonists.


Assuntos
Cinamatos/farmacologia , Derivados da Morfina/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides mu/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Células HEK293 , Humanos , Ligantes , Masculino , Naloxona/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo , Fatores de Tempo
4.
Neuropharmacology ; 151: 208-218, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30776373

RESUMO

Receptor heteromers often display distinct pharmacological and functional properties compared to the individual receptor constituents. In this study, we compared the properties of the DOP-KOP heteromer agonist, 6'-guanidinonaltrindole (6'-GNTI), with agonists for DOP ([D-Pen2,5]-enkephalin [DPDPE]) and KOP (U50488) in peripheral sensory neurons in culture and in vivo. In primary cultures, all three agonists inhibited PGE2-stimulated cAMP accumulation as well as activated extracellular signal-regulated kinase 1/2 (ERK) with similar efficacy. ERK activation by U50488 was Gi-protein mediated but that by DPDPE or 6'-GNTI was Gi-protein independent (i.e., pertussis toxin insensitive). Brief pretreatment with DPDPE or U50488 resulted in loss of cAMP signaling, however, no desensitization occurred with 6'-GNTI pretreatment. In vivo, following intraplantar injection, all three agonists reduced thermal nociception. The dose-response curves for DPDPE and 6'-GNTI were monotonic whereas the curve for U50488 was an inverted U-shape. Inhibition of ERK blocked the downward phase and shifted the curve for U50488 to the right. Following intraplantar injection of carrageenan, antinociceptive responses to either DPDPE or U50488 were transient but could be prolonged with inhibitors of 12/15-lipoxgenases (LOX). By contrast, responsiveness to 6'-GNTI remained for a prolonged time in the absence of LOX inhibitors. Further, pretreatment with the 12/15-LOX metabolites, 12- and 15- hydroxyeicosatetraenoic acid, abolished responses to U50488 and DPDPE but had no effect on 6'-GNTI-mediated responses either in cultures or in vivo. Overall, these results suggest that DOP-KOP heteromers exhibit unique signaling and functional regulation in peripheral sensory neurons and may be a promising therapeutic target for the treatment of pain.


Assuntos
Analgésicos Opioides/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Elife ; 62017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29125463

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) arises from collateral damage to peripheral afferent sensory neurons by anticancer pharmacotherapy, leading to debilitating neuropathic pain. No effective treatment for CIPN exists, short of dose-reduction which worsens cancer prognosis. Here, we report that stimulation of nicotinamide phosphoribosyltransferase (NAMPT) produced robust neuroprotection in an aggressive CIPN model utilizing the frontline anticancer drug, paclitaxel (PTX). Daily treatment of rats with the first-in-class NAMPT stimulator, P7C3-A20, prevented behavioral and histologic indicators of peripheral neuropathy, stimulated tissue NAD recovery, improved general health, and abolished attrition produced by a near maximum-tolerated dose of PTX. Inhibition of NAMPT blocked P7C3-A20-mediated neuroprotection, whereas supplementation with the NAMPT substrate, nicotinamide, potentiated a subthreshold dose of P7C3-A20 to full efficacy. Importantly, P7C3-A20 blocked PTX-induced allodynia in tumored mice without reducing antitumoral efficacy. These findings identify enhancement of NAMPT activity as a promising new therapeutic strategy to protect against anticancer drug-induced peripheral neurotoxicity.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Carbazóis/administração & dosagem , Ativadores de Enzimas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Nicotinamida Fosforribosiltransferase/metabolismo , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/prevenção & controle , Animais , Comportamento Animal , Modelos Animais de Doenças , Histocitoquímica , Ratos , Resultado do Tratamento
6.
J Pharmacol Exp Ther ; 359(3): 411-419, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27660244

RESUMO

Opioid receptors expressed by peripheral pain-sensing neurons are functionally inactive for antinociceptive signaling under most basal conditions; however, tissue damage or exposure to inflammatory mediators (e.g., bradykinin) converts these receptors from a nonresponsive state to a functionally competent state. Here we tested the hypothesis that the basal, nonresponsive state of the mu- and delta-opioid receptors (MOR and DOR, respectively) is the result of constitutive receptor activity that activates desensitization mechanisms, resulting in MOR and DOR receptor systems that are constitutively desensitized. Consistent with our previous findings, under basal conditions, neither the MOR agonist [d-Ala2,N-MePhe4,Gly-ol5]-enkephalin nor the DOR agonist [d-Pen2,5]-enkephalin, inhibited prostaglandin E2 (PGE2)-stimulated cAMP accumulation in peripheral sensory neurons in culture (ex vivo) or inhibited PGE2-stimulated thermal allodynia in the rat hind paw in vivo. Prolonged treatment with naloxone induced MOR and DOR responsiveness both in vivo and ex vivo to a similar magnitude as that produced by bradykinin. Also similar to bradykinin, the effect of naloxone persisted for 60 minutes after washout of the ligand. By contrast, prolonged treatment with 6ß-naltrexol, did not induce functional competence of MOR or DOR but blocked the effect of naloxone. Treatment with siRNA for ß-arrestin-2, but not ß-arrestin-1, also induced MOR and DOR functional competence in cultured peripheral sensory neurons. These data suggest that the lack of responsiveness of MOR and DOR to agonist for antinociceptive signaling in peripheral sensory neurons is due to constitutive desensitization that is likely mediated by ß-arrestin-2.


Assuntos
Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Bradicinina/farmacologia , Agonismo Inverso de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Masculino , Naloxona/farmacologia , Nociceptividade/efeitos dos fármacos , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Células Receptoras Sensoriais/efeitos dos fármacos , beta-Arrestina 2/deficiência , beta-Arrestina 2/genética
7.
Mol Pharmacol ; 87(3): 492-500, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25549668

RESUMO

The serotonin 2A (5-HT2A) receptor and the proinflammatory cytokine, interleukin-6 (IL-6), have both been implicated in psychiatric disorders. Previously, we demonstrated that these molecules both facilitate cognitive flexibility, a prefrontal cortex-mediated executive function impaired in multiple mental illnesses. In this study, we tested the hypothesis that IL-6 influences 5-HT2A receptor signaling, providing a potential mechanism by which this cytokine may influence behavior. We first demonstrated that 5-HT2A receptors and IL-6-mediated STAT3 phosphorylation colocalize in cells of the prefrontal cortex, providing the neuroanatomical substrate for a potential interaction. In the neuronally derived A1A1 cell line, which expresses both IL-6 and 5-HT2A receptors, we found that IL-6 attenuates inositol phosphate (IP) accumulation in response to the 5-HT2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), suggesting that IL-6 can regulate 5-HT2A receptor function. To identify the signaling pathway(s) that mediate this effect, we measured DOI-mediated IP accumulation in the presence of IL-6 and either the JAK-STAT inhibitor 124 [(9ß,10α,16α,23E)-2,16,20,25-tetrahydroxy-9-methyl-19-norlanosta-1,5,23-triene-3,11,22-trione], JSI-124, or the extracellular signal-regulated kinase inhibitor, 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD-98059). The IL-6 effect was blocked by JSI-124 but not PD-98059. Furthermore, silencing RNA knockdown of either JAK or STAT blocked the IL-6 effect, suggesting that IL-6-induced JAK-STAT activation can regulate 5-HT2A receptor signaling. Finally, to determine if IL-6 specifically regulates the 5-HT2A receptor system, we measured IP production mediated by another Gq-coupled receptor, bradykinin B2. IL-6 had no effect on bradykinin-mediated IP accumulation, suggesting that regulation may occur at the 5-HT2A receptor. These results may provide clues to the pathologic mechanisms underlying certain psychiatric disorders and may suggest novel therapeutic strategies for their treatment.


Assuntos
Interleucina-6/farmacologia , Janus Quinases/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...